Long Term Effects of Exercise

Cardiovascular System A			
Effect	Description	Functional effect	
Cardiac hypertrophy	The cardiac muscle of the heart	This means that the heart can pump more blood with less effort increasing	
	becomes bigger and stronger	the amount of blood being distributed throughout the body.	
Resting heart rate	The heart rate at rest becomes	As the heart is stronger it can expel more blood in one beat therefore does	
decreases	lower	not need to beat as often as an untrained heart	
Resting stroke volume	More blood is pumped out of the	As the heart is bigger and stronger it means more blood can enter the	
and cardiac output	heart during rest than previously	heart and be expelled than before, this contributes to the lower resting	
increases		heart rate	
Increase in	More capillaries are formed in the	This means there is a greater surface area for gaseous to exchange to occur	
capillarisation	body	meaning more O2 can enter the blood vessel and more CO2 can exit the	
		blood vessel	
Decrease chance of	With regular exercise the chance	As the heart and blood vessels are being used more regularly it means that	
cardiac heart disease	of developing cardiac heart	they stay healthy and do not become blocked or reduce their elasticity.	
	disease decreases	This contributes to healthy heart.	

Respiratory System A			
Effect	Description	Functional Effect	
Increased aerobic	The ability of the heart and lungs	This increasing means that athletes can exercise for longer or at a higher	
capacity	to supply the muscles with	intensity without fatiguing as they can provide the muscles with enough	
	oxygen	oxygen to create energy.	
Increased strength of	As the respiratory muscles are	This means that more air can be drawn into the performer's lungs with less	
respiratory muscles	used more frequently they	effort. This leads to increased breathing rate, tidal volume and minute	
	become stronger	volume.	
Increased breathing	The amount of breaths and	More O2 is able to enter the respiratory system whilst more CO2 is able to	
rate, tidal volume and	volume of air we inspire and	leave the respiratory system at a faster rate.	
minute volume	expire increases		
Increase surface area	The alveoli increase their surface	This means that there is a greater area for gaseous exchange to occur	
of alveoli	area	increasing the body's ability to take in 02 and release CO2	
Decrease in lung	The lungs remain healthy for	As the lungs are being used more they remain healthy and reduce the	
disease	longer	chance of developing diseases.	

Muscular System B			
Effect	Description	Explanation	
Muscular hypertrophy	Muscles can be become bigger,	As muscles are trained they become stronger being able to exert more	
	stronger and increase endurance	force as well as increasing their endurance meaning they can contract	
		repeatedly for a longer period of time without fatiguing.	
Resistance to fatigue	Muscles can contract and relax for	This means that a performer can exercise for a longer period of time at a	
	longer without tiring	higher intensity without slowing down or decreasing performance	
Increased flexibility	Muscles, tendons and ligaments	As muscles are used more regularly they become less rigid increasing to	
	become more pliable with	flexibility at the joints increasing.	
	training		
Increase rate of	Muscles are quicker at	This means that they are able to work at a higher rate over repeated	
recovery	replenishing their energy stores	exercises without fatiguing.	
	and removing waste products		
Increase in	Size and density of mitochondria	Mitochondria is where energy is created, increasd stores means more	
mitochondria	in the muscle increases	energy can be created to keep the performer exercising for longer	
Reduce injury	As the muscle is used to a greater	This means the performer can compete at a high level without the risk of	
	level of stress the chance of injury	injury, it leads to greater amounts of training leading to further	
	reduces	adaptations.	
Increased tolerance	The muscle is able to get rid of	The performer can work at higher intensities for longer without feeling	
and capacity to	waste products at a faster rate	pain or discomfort.	
remove lactic acid	than a non-trained performer and		
	can also perform with higher		
	levels of lactate in the muscle		