Topic: Area Under Graph and Gradient of Curve

Topic/Skill	Definition/Tips	Example
1. Area Under a Curve	To find the area under a curve, split it up into simpler shapes – such as rectangles, triangles and trapeziums – that approximate the area.	(y_{LV})
2. Tangent to a Curve	A straight line that touches a curve at exactly one point .	y Tangent line
3. Gradient of a Curve	 The gradient of a curve at a point is the same as the gradient of the tangent at that point. 1. Draw a tangent carefully at the point. 2. Make a right-angled triangle. 3. Use the measurements on the axes to calculate the rise and run (change in y and change in x) 4. Calculate the gradient. 	$Gradient = \frac{Change in y}{Change in x}$ $= \frac{16}{2} = 8$

4. Rate of	The rate of change at a particular instant in	70
Change	time is represented by the gradient of the	60
	tangent to the curve at that point.	E 40
		10 of change
		0 2 4 6 8
		Time (s)
		⁷⁰ 60 Negative rate
		50
		5 40 •
		115 30 20
		10
		0
		0 2 4 6 8 Time (s)
5. Distance-	You can find the speed from the gradient	
Time Graphs	of the line (Distance ÷ Time)	Distance (Km)
	The steeper the line, the quicker the speed.	
	A horizontal line means the object is not	
	moving (stationary).	
	moving (stationary).	
		Time (Hours)
6. Velocity-	You can find the acceleration from the	4
Time Graphs	gradient of the line (Change in Velocity ÷	Velocity 2
	Time)	
	The steeper the line, the quicker the	
	acceleration.	
	A horizontal line represents no	
	acceleration, meaning a constant velocity .	Time (Seconds)
	The area under the graph is the distance .	