Topic: Probability (Trees and Venns)

Topic/Skill	Definition/Tips	Example
1. Tree	Tree diagrams show all the possible	Bag A Bag B
Diagrams	outcomes of an event and calculate their	$\frac{1}{2}$ red
	probabilities.	1 3
		is red
	All branches must add up to 1 when	2 black
	adding downwards.	$< \frac{1}{1}$
	This is because the probability of	4 3 red
	something not happening is 1 minus the	$\frac{1}{5}$ black
	probability that it does happen.	2 black
		3
	Multiply going across a tree diagram.	
	Add going down a tree diagram.	
2. Independent	The outcome of a previous event does not	An example of independent events
Events	influence/affect the outcome of a second	could be <u>replacing</u> a counter in a bag
	event.	after picking it.
5. Dependent	The outcome of a previous event does	An example of dependent events could
Events	influence/affect the outcome of a second	be not replacing a counter in a bag after
	event.	picking it.
4 D 1 1 114		Without replacement
4. Probability	P(A) refers to the probability that event A	P(Red Queen) refers to the probability
Notation	will occur.	of picking a Red Queen from a pack of
		cards.
	$\mathbf{D}(\mathbf{A}^{\prime})$ refers to the probability that event	$\mathbf{P}(\mathbf{P} \mathbf{u}\mathbf{a}')$ refers to the probability that
	A will not accur	P(Blue) refers to the probability that
	A will <u>not</u> occur.	you do not pick blue.
	$P(A \sqcup B)$ refers to the probability that	P(Blonde Right Handed) refers to the
	event A or B or both will occur	probability that you pick someone who
	event A <u>or</u> D <u>or</u> both will occur.	is Blonde or Right Handed or both
		is biolide of Right Hunded of both.
	$P(A \cap B)$ refers to the probability that	$P(Blonde \cap Right Handed)$ refers to the
	both events A and B will occur.	probability that you pick someone who
		is both Blonde and Right Handed.
5. Venn	A Venn Diagram shows the relationship	$A \cup B$ $A \cap B$
Diagrams	between a group of different things and	
	how they overlap.	
	· · ·	
	You may be asked to shade Venn Diagrams	
	as shown below and to the right.	$(A \cap B)' \qquad (A \cup B)'$
		A B A B
	$A \cup B$ $A \cap B$	
	$A \xrightarrow{B} \zeta A \xrightarrow{B} \zeta$	
	The Union The Intersection 'A or B or Both' 'A and B'	
		1

		$A \cap B$ $A \cap B'$ $A \cap B'$ $B \cap B'$
6. Venn	\in means ' element of a set ' (a value in the	Set A is the even numbers less than 10.
Diagram	set)	$A = \{2, 4, 6, 8\}$
Notation	{ } means the collection of values in the	
	set.	Set B is the prime numbers less than
	to consider in the question)	$B = \{2, 3, 5, 7\}$
	A' means 'not in set A' (called	$A \cup B = \{2, 3, 4, 5, 6, 7, 8\}$
	complement)	$A \cap B = \{2\}$
	$\mathbf{A} \cup \mathbf{B}$ means 'A or B or both' (called	
	Union) $A \cap B$ means 'A and B (called	
	Intersection)	
7. AND rule	When two events, A and B, are	What is the probability of rolling a 4
for Probability	independent:	and flipping a Tails?
	$P(A \text{ and } B) = P(A) \times P(B)$	$P(4 and Tails) = P(4) \times P(Tails)$
		$=\frac{1}{2}\times\frac{1}{2}=\frac{1}{2}$
8 OP rule for	When two events A and P are mutually	$\frac{6}{6}$ $\frac{2}{12}$
Probability	exclusive:	rolling a 5?
	P(A or B) = P(A) + P(B)	P(2 or 5) = P(2) + P(5)
		$=\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{2}$
9. Conditional	The probability of an event A happening,	1st Bead 2nd Bead
Probability	given that event B has already happened.	3 Bod
	With conditional probability, check if the	8 Red
	numbers on the second branches of a tree	4 Red
	diagram changes. For example, if you have	9 Red 5 Green
	4 red beads in a bag of 9 beads and pick a red bead on the first pick then there will be	5 4 Red
	3 red beads left out of 8 beads on the	g Green 8 Red
	second pick.	
		4/8 Green