		Topic: Circle Theorems
Topic/Skill	Definition/Tips	Example
Circle	Angles in a semi-circle have a right angle	
Theorem 1	at the circumference.	$y = 90^{\circ}$
Circle	Onnosite angles in a svalie quadrilatoral	$x = 180 - 90 - 38 = 52^{\circ}$
Theorem 2	Opposite angles in a cyclic quadrilateral add up to 180°. $a+c=180^{\circ}$ $b+d=180^{\circ}$	$x = 180 - 83 = 97^{\circ}$ y = 180 - 92 = 88^{\circ}
Circle	The angle at the centre is twice the angle	
Theorem 3	at the circumference.	$x = 104 \div 2 = 52^{\circ}$
Circle	Angles in the same segment are equal.	
Theorem 4		$x = 42^{\circ}$ $y = 31^{\circ}$
Circle Theorem 5	A tangent is perpendicular to the radius	4cm
	at the point of contact.	y = 5cm (Pythagoras' Theorem)

Circle	Tangents from an external point at equal	
Theorem 6	in length.	$x = 90^{\circ}$
Circle Theorem 7	Alternate Segment Theorem	$x = 52^{\circ}$ $y = 38^{\circ}$