Knowledge Organiser 2.3 : Producing Robust Programs

1. Input Validation

3. Maintainability

Validation
Does not ensure that the data entered is correct, just that it is possible and

sensible

Type Check
The inputis in the correct data type. E.g. Integer, Real, String

Range Check
The input is within a correct range. E.g. Between 1 and 2

Presence Check
Some data has been entered. E.g. Reject blank inputs

Format Check
The input s in the correct format. E.g. dd/mm/yyyy

Length Check
The input has the correct number of characters. E.g. 8 or more chars

2. Anticipating Misuse

Comments
These explain the purpose of the program, or a section of code. They may also
explain any unusual approaches or temporary ‘fixes’

White Space
Make each section of the code stand out. Use spaces so code is not cramped
up and hard to read

Indentation

Mandatory in Python but use indentation to show the flow of the program

Variable Names
Use sensible variable names that have some meaning as to what they are

being used for

o 1o

Division by Zero
In mathematics, there is no number which when multiplied by zero returns a

non-zero number. Therefore the arithmetic logic unit cannot compute a division

by zero.

Communication
Error Online systems require connections to host servers. If this connection is

dropped, unable to be established or the server is overloaded, it could

potentially cause a program to crash or hang when loading/saving data.

Peripheral Error
Any peripheral may be in an error mode (e.g. paper jam)

Disk Error
Programs that read and write to files must handle exceptions, including:

e The file/folder not being found.

e The disk beins out of snace

4. Testing

Reasons for Testing
e To ensure there are no errors (bugs) in the code.

¢ To check that the program has an acceptable performance and usability.
¢ To ensure that unauthorised access is prevented.

e To check the program meets the requirements

Iterative Testing
e Each new module is tested as it is written.

e Program branches are checked for functionality.
e Checking new modules do not introduce new errors | not existing code.
e Tests to ensure the program handles erroneous data and exceptional

situations.

5. Suitable Test Data

6. Refining Algorithms

What do we mean by
refining? * Code should anticipate all inputs and it should deal with ‘bad’ data, or
missing data, and not crash.

¢ |t should ensure prompts to the user are helpful and that the input can

Normal Inputs
Data which should be accepted by a program without causing errors

Boundary Inputs
Data of correct type on the edge of accepted validation boundaries

Invalid Inputs
Data of the correct type but outside accepted validation checks

Erroneous Inputs
Data of the incorrect type which should be rejected by a computer system.




