
Knowledge Organiser 2.3 : Producing Robust Programs

1. Input Validation

Validation
Does not ensure that the data entered is correct, just that it is possible and 

sensible

Type Check
The input is in the correct data type. E.g. Integer, Real, String 

Range Check
The input is within a correct range. E.g. Between 1 and 2

Presence Check
Some data has been entered. E.g. Reject blank inputs

Format Check
The input is in the correct format. E.g. dd/mm/yyyy 

Length Check
The input has the correct number of characters. E.g. 8 or more chars

Why use input 
validation? • The program is more robust

• The program is more user friendly

• To prevent further errors occurring later in the algorithm

3. Maintainability

Comments
These explain the purpose of the program, or a section of code. They may also 

explain any unusual approaches or temporary ‘fixes’

White Space
Make each section of the code stand out. Use spaces so code is not cramped 

up and hard to read

Indentation
Mandatory in Python but use indentation to show the flow of the program

Variable Names
Use sensible variable names that have some meaning as to what they are 

being used for

Sub Programs
Use Procedures and functions to structure the code and eliminate duplicating 

portions of it

Constants
Declare constants at the top of the program

2. Anticipating Misuse

Division by Zero
In mathematics, there is no number which when multiplied by zero returns a 

non-zero number. Therefore the arithmetic logic unit cannot compute a division 

by zero.

Communication 
Error Online systems require connections to host servers. If this connection is 

dropped, unable to be established or the server is overloaded, it could 

potentially cause a program to crash or hang when loading/saving data.

Peripheral Error
Any peripheral may be in an error mode (e.g. paper jam)

Disk Error
Programs that read and write to files must handle exceptions, including:

• The file/folder not being found.

• The disk being out of space.

• The data in the file being corrupt.

• The end of the file being reached

Authentication
• Username and password to access systems.

• Password recovery by e-mailing to an authenticated e-mail address.

4. Testing

Reasons for Testing
• To ensure there are no errors (bugs) in the code.

• To check that the program has an acceptable performance and usability.

• To ensure that unauthorised access is prevented.

• To check the program meets the requirements

Iterative Testing
• Each new module is tested as it is written.

• Program branches are checked for functionality.

• Checking new modules do not introduce new errors I not existing code.

• Tests to ensure the program handles erroneous data and exceptional 

situations.

Final / Terminal 
Testing • Testing that all modules work together (integration testing)

• Testing the program produces the require results with normal, boundary, 

invalid and erroneous data.

• Checking the program meetings the requirements with real data.

6. Refining Algorithms

What do we mean by 
refining? • Code should anticipate all inputs and it should deal with ‘bad’ data, or 

missing data, and not crash. 

• It should ensure prompts to the user are helpful and that the input can 

only be of the correct type

5. Suitable Test Data

Normal Inputs
Data which should be accepted by a program without causing errors 

Boundary Inputs
Data of correct type on the edge of accepted validation boundaries 

Invalid Inputs
Data of the correct type but outside accepted validation checks

Erroneous Inputs
Data of the incorrect type which should be rejected by a computer system. 


