Knowledge Organiser 2.1: Searching and Sorting Algorithms

1. Binary Search

4. Insertion Sort

The Algorithm

Calculate a mid-point in the data set.

Check if that is the item to be found.

If not...

e If the item to be found is lower than the mid-point, repeat on the left half
of the data set.

e If the item to be found is greater than the mid-point, repeat on the right

The Algorithm

Efficiency

The insertion sort inserts each item into its correct position in a data set

one at a time.

It is a useful algorithm for small data sets.
It is particularly useful for inserting items into an already sorted list.
It is usually replaced by more efficient sorting algorithms for large data

sets.

2. Linear Search

The Algorithm

Requirements /
Efficiency

Starting from the beginning of a data set, each item is checked in turn to see

if it is the one being searched for

Doesn’t require the data set to be in order.

Will wark on anv tvne of storase device

Uses a divide and conquer method.
Creates two or more identical sub-problems from the largest problem,
solving them individually.

Combines their solutions to solve the bigger program.

3. Bubble Sort

The Algorithm

Sorts an unordered list of items.

It compares each item with the next one and swaps them if they are out of
order.

The algorithm finishes when no more swaps need to be made.

In effect it “bubbles” up the largest (or smallest) item to the end of the list in

successive passes.

Efficiency
e This is the most inefficient of the sorting algorithms but is very easy to
implement.
e This makes it a popular choice for very small data sets
X rorememper the coae 10r these algoritnims

The insertion sort
algorithm uses two lists,
one sorted and one
unsorted.

Elements are gradually
moved from the unsorted
list to the correct position

in the sorted list.

Sorted Unsorted
[5][2][1][3][4]
(2][1][3][4]
[[3][4]

relatively
efficient when
used with svv\a“
lists.

The bubble sort algorithm works
through a list, comparing pairs of
values and swapping them if

necessary.

It keeps on passing through the
list comparing values and making
swaps until the list is sorted.

(4]
N
w
~

|

Easy to
implement;
however, it

isn't very

efficient.

Pass 1 —

D& (][]

- B B[]
[B [=][=] (=]

0
o
7]
»
N

The merge sort
algorithm works by
splitting a list into
individual elements

and gradually
merging them into
larger and larger
sorted lists until they
are in one sorted list.

S~ == -]~

-l

Very efficient
when used With
both Iargc and

small [ists,

