
Knowledge Organiser 2.1: Searching and Sorting Algorithms

5. Merge Sort

The Algorithm
• A very efficient method of performing a sort.

• Uses a divide and conquer method.

• Creates two or more identical sub-problems from the largest problem, 

solving them individually.

• Combines their solutions to solve the bigger program.

• Data set is repeatedly split in half until each item is in its own list.

• Adjacent lists are then merged back together.

Efficiency
• Works very well for large data sets.

1. Binary Search

The Algorithm
• Calculate a mid-point in the data set.

• Check if that is the item to be found.

• If not…

• If the item to be found is lower than the mid-point, repeat on the left half 

of the data set.

• If the item to be found is greater than the mid-point, repeat on the right 

half of the data set.

• Repeat until the item is found or there are no items left to check.

Requirements / 
Efficiency • Requires the data set to be in order of a key field.

• Can be done with letters as well as numbers—use alphabetical order

• More efficient than a linear search on average 

2. Linear Search

The Algorithm
• Starting from the beginning of a data set, each item is checked in turn to see 

if it is the one being searched for

Requirements / 
Efficiency • Doesn’t require the data set to be in order.

• Will work on any type of storage device.

• Can be efficient for smaller data sets.

• Is very inefficient for large data sets 

4. Insertion Sort

The Algorithm
• The insertion sort inserts each item into its correct position in a data set 

one at a time.

Efficiency
• It is a useful algorithm for small data sets.

• It is particularly useful for inserting items into an already sorted list.

• It is usually replaced by more efficient sorting algorithms for large data 

sets.

6. For the exam

✓ Understand the main steps of each algorithm
✓ Understand any pre-requisites of an algorithm
✓ Apply the algorithm to a data set
✓ Identify an algorithm if given the code for it
✓ Show all your steps in detail
x To remember the code for these algorithms

3. Bubble Sort

The Algorithm
• Sorts an unordered list of items.

• It compares each item with the next one and swaps them if they are out of 

order.

• The algorithm finishes when no more swaps need to be made.

• In effect it “bubbles” up the largest (or smallest) item to the end of the list in 

successive passes.

Efficiency
• This is the most inefficient of the sorting algorithms but is very easy to 

implement.

• This makes it a popular choice for very small data sets 


