
Knowledge Organiser 2.1: Algorithms

3. Flowcharts, Pseudocode and OCR Reference Language

Flowchart
A method of representing the sequences of steps in an algorithm in the form

of a diagram. Sometimes called a Flow diagram

Structure Diagram
A diagram showing a top-down breakdown of a complex problem

Pseudocode
A text based alternative of representing the sequences of steps in an

algorithm. Pseudo-code can be thought of as a simplified form of

programming code.

OCR Reference
Language You must be able to read this but you can always use Python in your exams—

but be precise

1. Computational Thinking

Abstraction
The process of removing unnecessary details and including only the relevant

details.It is a method of computational thinking that focusses on what is

important in problem solving

Decomposition
The process of breaking a complex problem down into smaller more

manageable parts. Dealing with many different stages of a problem at once is

much more difficult than breaking a problem down into a number of smaller

problems and solving each, one at time.

Advantages of
Program
Decomposition

• Makes problems easier to solve. Different people can work on different parts

of a problem at the same time…

• …reducing development time.

• Program components developed in one program can easily be used in other

programs

Algorithmic
Thinking A way of getting to a solution by identifying the individual steps needed. By

creating a set of rules, an algorithm that is followed precisely, leads to an

answer. Algorithmic thinking allows solutions to be automated.

2. Input Processes and Output

Inputs
• Anything which needs to be supplied to the program so it can meet its goals.

• Often input by the user.

• Consider an appropriate variable name and data type for the input.

Processes
• Consider what calculations need to be performed while the program is

running.

• Does data need to change formats or data types

Outputs
• Consider what your program need to output.

• Consider what form this output need to take.

• Consider an appropriate variable name and data type for any output

3. Structure Diagrams

• Structure diagrams illustrate problem decomposition.

• They can be used for developers to understand a problem to code and to share with users during

systems analysis.

• They are produced using a method known as step-wise refinement.

• Break problem down using decomposition into ever smaller components.

4. Types of Errors

Syntax Error
Syntax errors are errors which break the grammatical rules of the

programming language. They stop it from being run/translated

Logic Errors
Logic errors are errors which produce unexpected output. On their own they

won’t stop the program running

5. Trace Tables

• A vital skill for understanding program flow and testing the accuracy of an algorithm for logic is
called “Tracing Execution”.

• Examine a printed extract of program code and running thorough the program.
• Take each line at a time and write out in a trace table the current state of each variable. Noting

down any output the program produces.
• Each variable present in the program should have its own column in the trace table.
• A new row should be added under any column if the state of a variable changes.
• Trace tables are an excellent way to track down logic errors in a problem.

